Background To develop a nomogram for predicting the International Study Group of Liver Surgery (ISGLS) grade B/C posthepatectomy liver failure (PHLF) in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients. Methods Patients initially treated with hepatectomy were included. Univariate regression analysis and stochastic forest algorithm were applied to extract the core indicators and reduce redundancy bias. The nomogram was then constructed by using multivariate logistic regression, and validated in internal and external cohorts, and a prospective clinical application. Results There were 900, 300 and 387 participants in training, internal and external validation cohorts, with the morbidity of grade B/C PHLF were 13.5, 11.0 and 20.2%, respectively. The nomogram was generated by integrating preoperative total bilirubin, platelet count, prealbumin, aspartate aminotransferase, prothrombin time and standard future liver remnant volume, then achieved good prediction performance in training (AUC = 0.868, 95%CI = 0.836–0.900), internal validation (AUC = 0.868, 95%CI = 0.811–0.926) and external validation cohorts (AUC = 0.820, 95%CI = 0.756–0.861), with well-fitted calibration curves. Negative predictive values were significantly higher than positive predictive values in training cohort (97.6% vs. 33.0%), internal validation cohort (97.4% vs. 25.9%) and external validation cohort (94.3% vs. 41.1%), respectively. Patients who had a nomogram score < 169 or ≧169 were considered to have low or high risk of grade B/C PHLF. Prospective application of the nomogram accurately predicted grade B/C PHLF in clinical practise. Conclusions The nomogram has a good performance in predicting ISGLS grade B/C PHLF in HBV-related HCC patients and determining appropriate candidates for hepatectomy.
【저자키워드】 nomogram, Hepatocellular carcinoma, Posthepatectomy liver failure, Hepatitis B virals,