Supplemental Digital Content is available in the text. Background: We hypothesize that comprehensive surveillance of COVID-19 in Singapore has facilitated early case detection and prompt contact tracing and, with community-based measures, contained spread. We assessed the effectiveness of containment measures by estimating transmissibility (effective reproduction number, ) over the course of the outbreak. Methods: We used a Bayesian data augmentation framework to allocate infectors to infectees with no known infectors and determine serial interval distribution parameters via Markov chain Monte Carlo sampling. We fitted a smoothing spline to the number of secondary cases generated by each infector by respective onset dates to estimate and evaluated increase in mean number of secondary cases per individual for each day’s delay in starting isolation or quarantine. Results: As of April 1, 2020, 1000 COVID-19 cases were reported in Singapore. We estimated a mean serial interval of 4.6 days [95% credible interval (CI) = 4.2, 5.1] with a SD of 3.5 days (95% CI = 3.1, 4.0). The posterior mean was below one for most of the time, peaking at 1.1 (95% CI = 1.0, 1.3) on week 9 of 2020 due to a spreading event in one of the clusters. Eight hundred twenty-seven (82.7%) of cases infected less than one person on average. Over an interval of 7 days, the incremental mean number of cases generated per individual for each day’s delay in starting isolation or quarantine was 0.03 cases (95% CI = 0.02, 0.05). Conclusions: We estimate that robust surveillance, active case detection, prompt contact tracing, and quarantine of close contacts kept below one.
【저자키워드】 COVID-19, Bayesian, modeling, Reproduction number, Outbreak containment,