Interferon α (IFN-α) exerts potent antiviral, immunomodulatory, and antiproliferative activity and have proven clinical utility in chronic hepatitis B and C virus infections. However, repeated IFN-α administration induces neutralizing antibodies (NAb) against the therapeutic in a significant number of patients. Associations between IFN-α immunogenicity and loss of efficacy have been described. So as to improve the in vivo biological efficacy of IFN-α, a long lasting hyperglycosylated protein (4N-IFN) derived from IFN-α2b wild type (WT-IFN) was developed. However, in silico analysis performed using established in silico methods revealed that 4N-IFN had more T cell epitopes than WT-IFN. In order to develop a safer and more efficient IFN therapy, we applied the DeFT (De-immunization of Functional Therapeutics) approach to producing functional, de-immunized versions of 4N-IFN. Using the OptiMatrix in silico tool in ISPRI, the 4N-IFN sequence was modified to reduce HLA binding potential of specific T cell epitopes. Following verification of predictions by HLA binding assays, eight modifications were selected and integrated in three variants: 4N-IFN(VAR1), (VAR2) and (VAR3). Two of the three variants (VAR1 and VAR3) retained anti-viral function and demonstrated reduced T-cell immunogenicity in terms of T-cell proliferation and Th1 and Th2 cytokine levels, when compared to controls (commercial NG-IFN (non-glycosylated), PEG-IFN, WT-IFN and 4N-IFN). It was previously demonstrated that N-glycosylation improved IFN-α pharmacokinetic properties. Here, we further reduce immunogenicity as measured in vitro using T cell assays and cytokine profiling by modifying the T cell epitope content of a protein (de-immunizing). Taking into consideration the present results and previously reported immunogenicity data for commercial IFN-α2b variants, 4N-IFN(VAR1) and 4N-IFN-4N(VAR3) appear to be promising candidates for improved IFN-α therapy of HCV and HBV.
【저자키워드】 immunogenicity, T cell epitope, in silico prediction, IFN-α, IFN alpha, De-immunization, Hepatitis therapy, T-cell proliferation assay.,