Simple Summary Respiratory disease in pigs causes suffering in infected animals and economic losses to producers. One of the most appropriate approaches to minimising these negative effects is by the early detection of infected animals. This pilot study aimed to use computer-based techniques to measure changes in temperature (eye and ear-base temperature), heart rate and respiration rate of pigs from thermal-infrared and conventional images. These measures, together with clinical observations, were obtained from pigs that were infected with Actinobacillus pleuropneumoniae (APP) and from pigs that were healthy. Infected pigs showed higher temperature and heart rate than healthy pigs across the period analysed. Respiration rate showed less difference between infected and healthy pigs. In addition, the biggest changes in these measures were recorded from six hours before the clinical observations identified sick animals. Results have highlighted that computer vision techniques can provide important and useable data regarding physiological changes that can indicate early signs of respiratory infection in pigs. This could aid the management of the disease, increasing the success of the treatment and decreasing the rate of severe cases and death. Abstract Respiratory diseases are a major problem in the pig industry worldwide. Due to the impact of these diseases, the early identification of infected herds is essential. Computer vision technology, using RGB (red, green and blue) and thermal infrared imagery, can assist the early detection of changes in animal physiology related to these and other diseases. This pilot study aimed to identify whether these techniques are a useful tool to detect early changes of eye and ear-base temperature, heart rate and respiration rate in pigs that were challenged with Actinobacillus pleuropneumoniae. Clinical observations and imagery were analysed, comparing data obtained from animals that showed some signs of illness with data from animals that showed no signs of ill health. Highly significant differences ( p < 0.05) were observed between sick and healthy pigs in heart rate, eye and ear temperature, with higher heart rate and higher temperatures in sick pigs. The largest change in temperature and heart rate remotely measured was observed around 4–6 h before signs of clinical illness were observed by the skilled technicians. These data suggest that computer vision techniques could be a useful tool to detect indicators of disease before the symptoms can be observed by stock people, assisting the early detection and control of respiratory diseases in pigs, promoting further research to study the capability and possible uses of this technology for on farm monitoring and management.
【저자키워드】 Symptoms, computer vision, Physiological changes, animal health, imagery, animal monitoring,