Background Salmonella pathogenicity island (SPI)-13 is conserved in many serovars of S. enterica , including S . Enteritidis, S . Typhimurium and S . Gallinarum. However, it is absent in typhoid serovars such as S . Typhi and Paratyphi A, which carry SPI-8 at the same genomic location. Because the interaction with macrophages is a critical step in Salmonella pathogenicity, in this study we investigated the role played by SPI-13 and SPI-8 in the interaction of S. Enteritidis and S. Typhi with cultured murine (RAW264.7) and human (THP-1) macrophages. Results Our results showed that SPI-13 was required for internalization of S. Enteritidis in murine but not human macrophages. On the other hand, SPI-8 was not required for the interaction of S. Typhi with human or murine macrophages. Of note, the presence of an intact copy of SPI-13 in a S . Typhi mutant carrying a deletion of SPI-8 did not improve its ability to be internalized by, or survive in human or murine macrophages. Conclusions Altogether, our results point out to different roles for SPI-13 and SPI-8 during Salmonella infection. While SPI-13 contributes to the interaction of S . Enteritidis with murine macrophages, SPI-8 is not required in the interaction of S. Typhi with murine or human macrophages. We hypothesized that typhoid serovars have lost SPI-13 and maintained SPI-8 to improve their fitness during another phase of human infection. Electronic supplementary material The online version of this article (doi:10.1186/s40659-017-0109-8) contains supplementary material, which is available to authorized users.
【저자키워드】 macrophages, Salmonella, THP-1, RAW264.7, Typhi, Enteritidis, SPI-13, SPI-8,