Amoebiasis caused by Entamoebahistolytica triggers an acute inflammatory response at early stages of intestinal infection. The patho-physiological study of intestinal amoebiasis requires the development of powerful animal models. Swine provide robust model for human diseases and they could be used to study intestinal amoebiasis. Here, we introduce an in vitro model of swine intestinal epithelial cell (IPI-2I) co-cultured with E. histolytica. Intestinal epithelial cells (IECs) have crucial roles in sensing pathogens and initiating innate immune response, which qualitatively influence adaptive immune response against them. The contact between the two cells induces marked macroscopic lesions of IEC monolayer and striking alteration of the IPI-2I cell phenotype including blebbing, such as loss of attachment before to be phagocyte by the trophozoite. Increase in Lactate Dehydrogenase (LDH) levels in the culture supernatant of IECs was observed when ameba is present and could reflect the cellular cytotoxicity exerted by the parasite. Using quantitative real-time PCR, we identified the up-regulation of cytokines/chemokines implicated in neutrophil chemoattraction and inflammation, such as CCL2, CCL20, CXCL2, CXCL3, GM-CSF, IL1 alpha, IL6 and IL8, in response to the parasite that can further regulate the immunoregulatory functions of the immune cells of the host. The study points a cardinal role of these pro-inflammatory compounds as central mediators in the interaction IECs/ameba and suggests mechanisms by which they coordinate intestinal immune response. This will focus future efforts on delineating the molecular and cellular mechanisms of other cell partners by the way of in vivo infection of swine.
Broad early immune response of porcine epithelial jejunal IPI-2I cells to Entamoeba histolytica
Entamoeba histolytica에 대한 돼지 상피 소장 IPI-2I 세포의 광범위한 초기 면역 반응
[Category] 세균성이질,
[Article Type] journal-article
[Source] pubmed
All Keywords