[[[ Background: ]]] The pathogenesis of inflammatory bowel disease (IBD) is associated with a dysregulated mucosal immune response. Certain stimulators of innate immunity (CpG DNA or GM-CSF) are reported to be anti-inflammatory in IBD. Toll-like receptor-7 (TLR7) is an important regulator of innate immunity and its activation plays a key role in induction of type I interferon (IFN). The present study tests the hypothesis that the TLR7 agonists Imiquimod has therapeutic efficacy in IBD. [[[ Methods: ]]] Acute colitis was induced in Balb/c mice by giving 5% dextran sodium sulfate (DSS) in drinking water for 7 days. Mice were treated with Imiquimod either orally or topically and its therapeutic effects on disease activity were examined. Isolated mouse CD11c+ dendritic cells and human intestinal epithelial cells (HT29, HCT116) were treated with Imiquimod (10 μg/mL) and their susceptibility to intracellular Salmonella typhimurium infection was assessed by gentamicin protection assay. [[[ Results: ]]] Oral administration of Imiquimod induced type I IFN expression in the gastrointestinal mucosa and ameliorated DSS-induced acute colitis as assessed by clinical parameters, histology, and mRNA expression of proinflammatory cytokines. Topical administration of Imiquimod also ameliorated DSS colitis by inducing the expression of type I IFN in the colonic mucosa. However, no evidence for a systemic IFN response was observed. Imiquimod treatments to both CD11c+ and intestinal epithelial cells significantly increased expression of antimicrobial peptides (AMPs) and reduced survival of intracellular S. typhimurium. [[[ Conclusions: ]]] Imiquimod induces type I IFN and AMP to ameliorate DSS-induced acute colitis and prevents Salmonella survival. Therefore, Imiquimod treatments provide a new therapeutic approach for IBD patients.
Toll-like receptor-7 ligand imiquimod induces type I interferon and antimicrobial peptides to ameliorate dextran sodium sulfate-induced acute colitis
Toll-like 수용체-7 리간드 인이퀴모드는 제1형 인터페론과 항균 펩타이드를 유도하여 덱스트란 나트륨 황산염 유발 급성 대장염을 개선합니다.
[Category] 살모넬라증,
[Article Type] journal-article
[Source] pubmed
All Keywords