The innate immune response is critical to enteric disease resistance and the induction of mucosal adaptive immunity. In mucosae of the small intestine, Peyer’s patches play a central role in immune surveillance and sampling of bacteria by specialized M cells. The innate immune response to Salmonella enterica serovar Choleraesuis, an enteric pathogen of swine, involves IL-1beta and IL-8 mRNA induction but not that of IL-6 and TNFalpha, in contrast to Salmonella serovar Typhimurium infection of murine small intestine. We investigated in vivo responses to Salmonella and potential effects of animal variation since the gut environment is highly dynamic and constantly changing physiologically. Salmonella serovar Choleraesuis induced an early proinflammatory cytokine response at 6h after infection, which was characterized by a 4-fold increase in production of CXCL2 mRNA by jejunal Peyer’s patches (JPP), and a 12-fold increase in IL-1beta and 4-fold increase in IL-8 (CXCL8) mRNAs by distal ileal Peyer’s patches (IPP). Levels of IL-1beta and IL-8 mRNA were positively correlated with numbers of mucosal neutrophils in the distal IPP. Salmonella DNA was also detected in ileal tissues, including Peyer’s patches, absorptive epithelium and mesenteric lymph nodes, in 33-83% of infected animals, compared to the jejunal tissues, which were positive in 0-33% of infected pigs. Notwithstanding substantial animal-to-animal variation, IL-1beta was increased in both proximal and distal IPP, IL-8 was increased in the distal IPP, and calprotectin was associated with both by cluster analysis. These data indicate that IL-1beta and IL-8 expression in the IPP plays a key role early in the interaction between Salmonella serovar Choleraesuis and the small intestine.
Mucosal innate immune response to intragastric infection by Salmonella enterica serovar Choleraesuis
살모넬라 엔테리카 세로바 콜레라수이스에 의한 위내 감염에 대한 점막 선천 면역 반응
[Category] 살모넬라증,
[Article Type] journal-article
[Source] pubmed
All Keywords