Poly lactide-co-glycolide and polylactide polymer particles entrapping immunoreactive tetanus toxoid (TT) were prepared with a view to developing a single shot controlled release vaccine formulation. Denaturation of TT by dichloromethane (DCM) during primary emulsification stage of particle formulation was minimized by incorporation of an optimal amount of rat serum albumin (RSA) in the internal aqueous phase. Incorporation of RSA as a stabilizer during the primary emulsification stage of polymer particle formulation protected the immunoreactivity of TT, enhanced its encapsulation efficiency and also led to uniform polymer particle formation. Use of sonication, both during primary and secondary emulsification processes, resulted in formation of nanoparticles whereas microparticles were formed when the secondary emulsion was carried out by homogenization. Immunoreactive TT particles made from different polymers incorporating stabilizers released antigen continuously for more than four months in vitro. Single injection of both type of particles encapsulating stabilized TT elicited anti-TT antibody titers in rats for more than five months, which was higher than that obtained with TT injected in saline. Anti-TT antibody titers in vivo were in accordance with the in vitro release characteristics of immunoreactive TT from the particles. Immune responses with hydrophobic polymer particles were better than those made using hydrophilic polymers. These results indicate the importance of protecting the immunoreactivity of TT during formation of polymer particles for sustained and improved antibody response.
Formulation and Characterization of Immunoreactive Tetanus Toxoid Biodegradable Polymer Particles
면역반응성 파상풍 톡소이드 생분해성 폴리머 입자의 조제 및 특성화
[Category] 파상풍,
[Article Type] journal-article
[Source] pubmed
All Keywords