The immunogenicity and protective efficacy of a DNA vaccine encoding a genetically inactivated S1 domain of pertussis toxin was evaluated using a murine respiratory challenge model of Bordetella pertussis infection. It was found that mice immunized via the intramuscular route elicited a purely cell-mediated immune response to the DNA vaccine, with high levels of gamma interferon (IFN-gamma) and interleukin (IL)-2 detected in the S1-stimulated splenocyte supernatants and no serum IgG. Despite the lack of an antibody response, the lungs of DNA-immunized mice were cleared of B. pertussis at a significantly faster rate compared with mock-immunized mice following an aerosol challenge. To gauge the true potential of this S1 DNA vaccine, the immune response and protective efficacy of the commercial diphtheria-tetanus-acellular pertussis (DTaP) vaccine were included as the gold standard. Immunization with DTaP elicited a typically strong T-helper (Th)2-polarized immune response with significantly higher titres of serum IgG than in the DNA vaccine group, but a relatively weak Th1 response with low levels of IFN-gamma and IL-2 detected in the supernatants of antigen-stimulated splenocytes. DTaP-immunized mice cleared the aerosol challenge more efficiently than DNA-immunized mice, with no detectable pathogen after day 7 post-challenge.
Parenteral immunization of mice with a genetically inactivated pertussis toxin DNA vaccine induces cell-mediated immunity and protection
유전자 비활성화 백일해 독소 DNA 백신으로 마우스를 비경구 면역화하면 세포 매개 면역과 보호가 유도된다.
[Category] 백일해,
[Article Type] journal-article
[Source] pubmed
All Keywords