Background Across most of sub-Saharan Africa, malaria is transmitted by mosquitoes from the Anopheles gambiae complex, comprising seven morphologically indistinguishable but behaviourally-diverse sibling species with ecologically-distinct environmental niches. Anopheles gambiae and An. arabiensis are the mostly widely distributed major malaria vectors within the complex, while An. quadriannulatus is sparsely distributed. Methods Indoor residual spraying (IRS) with the organophosphate pirimiphos-methyl (PM) was conducted four times between 2011 and 2017 in the Luangwa Valley, south-east Zambia. Anopheles mosquitoes were repeatedly collected indoors by several experiments with various objectives conducted in this study area from 2010 onwards. Indoor mosquito collection methods included human landing catches, Centres for Disease Control and Prevention miniature light traps and back pack aspirators. Anopheles gambiae complex mosquitoes were morphologically identified to species level using taxonomic keys, and to molecular level by polymerase chain reaction. These multi-study data were collated so that time trends in the species composition of this complex could be assessed. Results The proportion of indoor An. gambiae complex accounted for by An. quadriannulatus declined from 95.1% to 69.7% following two application PM-IRS rounds with an emulsifiable concentrate formulation from 2011 to 2013, while insecticidal net utilisation remained consistently high throughout that period. This trend continued after two further rounds of PM-IRS with a longer-lasting capsule suspension formulation in 2015 and 2016/2017, following which An. quadriannulatus accounted for only 4.5% of the complex. During the same time interval there was a correspondingly steady rise in the proportional contribution of An. arabiensis to the complex, from 3.9 to 95.1%, while the contribution of nominate An. gambiae remained stable at ≤ 0.9%. Conclusion It seems likely that An. arabiensis is not only more behaviourally resilient against IRS than An. gambiae , but also than An. quadriannulatus populations exhibiting indoor-feeding, human-feeding and nocturnal behaviours that are unusual for this species. Routine, programmatic entomological monitoring of dynamic vector population guilds will be critical to guide effective selection and deployment of vector control interventions, including supplementary measures to tackle persisting vectors of residual malaria transmission like An. arabiensis .
【저자키워드】 Surveillance, monitoring, Mosquito, vector control, Anopheles, Residual transmission, Indoor feeding, Outdoor feeding,