Abstract Background Erythrocyte invasion by malaria parasites is essential for blood-stage development. Consequently, parasite proteins critically involved in erythrocyte invasion, such as the Plasmodium vivax reticulocyte binding proteins (RBPs) that mediate preferential invasion of reticulocytes, are considered potential vaccine targets. Thus, targeting the RBPs could prevent blood-stage infection and disease. The RBPs are large, and little is known about their functional domains and whether individuals naturally exposed to P. vivax acquire binding-inhibitory antibodies to these critical binding regions. This study aims to functionally and immunologically characterize Plasmodium vivax RBP1a. Methods Recombinant proteins of overlapping fragments of RBP1a were used to determine binding specificity to erythrocytes and immunogenicity in laboratory animals. The naturally acquired antibody response to these proteins was evaluated using serum samples from individuals in regions of endemicity. Results The N-terminal extracellular region, RBP1 157–650 (RBP1:F8), was determined to bind both reticulocytes and normocytes, with a preference for immature reticulocytes. Antibodies elicited against rRBP1:F8 blocked binding between RBP1:F8 and erythrocytes. Naturally acquired anti-RBP1 binding-inhibitory antibodies were detected in serum specimens from P. vivax –exposed individuals from Papua New Guinea and Brazil. Conclusion Recombinant RBP1:F8 binds human erythrocytes, elicits artificially induced functional blocking antibodies, and is a target of naturally acquired binding-inhibitory antibodies. The Plasmodium vivax reticulocyte binding protein mediates parasite invasion of human reticulocytes. Here, we have defined the ligand domain of RBP1a, determined its binding specificity to human erythrocytes and demonstrated its potential to elicit artificially induced and naturally acquired binding-inhibitory antibodies.
【저자키워드】 Vaccine, malaria, Plasmodium vivax, reticulocyte binding protein,