Background Immunity to malaria requires innate, adaptive immune responses and Plasmodium -specific memory cells. Previously, mice semi-immune to malaria was developed. Three cycles of infection and cure (‘three-cure’) were required to protect mice against Plasmodium berghei (ANKA strain) infection. Methods C57BL/6 J mice underwent three cycles of P. berghei infection and drug-cure to become semi-immune. The spleens of infected semi-immune mice were collected for flow cytometry analysis. CD11c(+) cells of semi-immune mice were isolated and transferred into naïve mice which were subsequently challenged and followed up by survival and parasitaemia. Results The percentages of splenic CD4(+) and CD11c(+) cells were increased in semi-immune mice on day 7 post-infection. The proportion and number of B220(+)CD11c(+)low cells (plasmacytoid dendritic cells, DCs) was higher in semi-immune, three-cure mice than in their naïve littermates on day 7 post-infection (2.6 vs 1.1% and 491,031 vs 149,699, respectively). In adoptive transfer experiment, three months after the third cured P. berghei infection, splenic CD11c(+) DCs of non-infected, semi-immune, three-cure mice slowed Plasmodium proliferation and decreased the death rate due to neurological pathology in recipient mice. In addition, anti- P. berghei IgG1 level was higher in mice transferred with CD11c(+) cells of semi-immune, three-cure mice than mice transferred with CD11c(+) cells of naïve counterparts. Conclusion CD11c(+) cells of semi-immune mice protect against experimental cerebral malaria three months after the third cured malaria, potentially through protective plasmacytoid DCs and enhanced production of malaria-specific antibody.
【저자키워드】 plasmacytoid DCs, cerebral malaria, Semi-immune, CD11c(+) DCs, Malaria-specific antibody,