Abstract
Over the past few months, the campaign against COVID-19 has developed into one of the world’s most sought anti-toxin treatment scheme. It is fundamental to distinguish cases of COVID-19 precisely and quickly to help avoid this pandemic from taking a wrong turn with a proper medical reasoning and solution. While Reverse-Transcription Polymerase Chain Reaction (RT-PCR) has been useful in detection of corona virus, chest X-Ray techniques has proven to be more successful and beneficial at detection of the effects of virus. With the increase in COVID patients and the X-Rays done, it is currently possible to classify the X-Ray reports with transfer learning. This paper presents a novel approach, i.e., Hybrid Convolutional Neural Network (HDCNN), which integrates Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) architecture for the finding of COVID-19 using the chest X-Ray. The transfer learning approach, namely slope weighted activation class planning (Grad-CAMs), is used with HDCNN to display images responsible for taking decisions. In this study, HDCNN is compared with other CNNs such as Inception-v3, ShuffleNet, SqueezeNet, VGG-19 and DenseNet. As a result, HDCNN has achieved an accuracy of 98.20%, precision of 97.31%, recall of 97.1% and F1 score of 0.97. Compared to other current deep learning models, the HDCNN has achieved better results, and this can be used for diagnosis purpose after proper approvals.
【저자키워드】 Convolutional neural network, Recurrent Neural Network, Grad-CAMs, DarkCovidNet, CovidGAN, 【초록키워드】 COVID-19, Treatment, pandemic, deep learning, Diagnosis, RT-PCR, virus, CNN, Accuracy, Chest, network, recall, Recurrent, hybrid, Activation, Precision, reaction, chain, help, transfer, approvals, while, over, Effect, approach, responsible, can be used, increase in, turn, Neural, COVID patient, 【제목키워드】 COVID-19, deep learning, X-ray, transfer, approach,