Group A streptococcus (GAS) is a Gram-positive human bacterial pathogen responsible for more than 700 million infections annually worldwide. Beta-lactam antibiotics are the primary agents used to treat GAS infections. Naturally occurring GAS clinical isolates with decreased susceptibility to beta-lactam antibiotics attributed to mutations in PBP2X have recently been documented. This prompted us to perform a genome-wide screen to identify GAS genes that alter beta-lactam susceptibility in vitro . Using saturated transposon mutagenesis, we screened for GAS gene mutations conferring altered in vitro susceptibility to penicillin G and/or ceftriaxone, two beta-lactam antibiotics commonly used to treat GAS infections. In the aggregate, we found that inactivating mutations in 150 GAS genes are associated with altered susceptibility to penicillin G and/or ceftriaxone. Many of the genes identified were previously not known to alter beta-lactam susceptibility or affect cell wall biosynthesis. Using isogenic mutant strains, we confirmed that inactivation of clpX (Clp protease ATP-binding subunit) or cppA (CppA proteinase) resulted in decreased in vitro susceptibility to penicillin G and ceftriaxone. Deletion of murA1 (UDP- N- acetylglucosamine 1-carboxyvinyltransferase) conferred increased susceptibility to ceftriaxone. Our results provide new information about the GAS genes affecting susceptibility to beta-lactam antibiotics. IMPORTANCE Beta-lactam antibiotics are the primary drugs prescribed to treat infections caused by group A streptococcus (GAS), an important human pathogen. However, the molecular mechanisms of GAS interactions with beta-lactam antibiotics are not fully understood. In this study, we performed a genome-wide mutagenesis screen to identify GAS mutations conferring altered susceptibility to beta-lactam antibiotics. In the aggregate, we discovered that mutations in 150 GAS genes were associated with altered beta-lactam susceptibility. Many identified genes were previously not known to alter beta-lactam susceptibility or affect cell wall biosynthesis. Our results provide new information about the molecular mechanisms of GAS interaction with beta-lactam antibiotics.
【저자키워드】 beta-lactam antibiotics, group A streptococcus, TraDIS, transposon mutagenesis.,