Background The emergence of drug resistance is a major problem in malaria control. For mathematical modelling of the transmission and spread of drug resistance the determinant parameters need to be identified and measured. The underlying hypothesis is that mutations associated with drug resistance incur fitness costs to the parasite in absence of drug pressure. The distribution of drug resistance haplotypes in different subsets of the host population was investigated. In particular newly acquired haplotypes after radical cure were characterized and compared to haplotypes from persistent infections. Methods Mutations associated with antimalarial drug resistance were analysed in parasites from children, adults, and new infections occurring after treatment. Twenty-five known single nucleotide polymorphisms from four Plasmodium falciparum genes associated with drug resistance were genotyped by DNA chip technology. Results Haplotypes were found to differ between subsets of the host population. A seven-fold mutated haplotype was significantly reduced in adults compared to children and new infections, whereas parasites harbouring fewer mutations were more frequent in adults. Conclusion The reduced frequency of highly mutated parasites in chronic infections in adults is likely a result of fitness costs of drug resistance that increases with number of mutations and is responsible for reduced survival of mutant parasites.
Heterogeneous distribution of Plasmodium falciparum drug resistance haplotypes in subsets of the host population
플라스모디움 팔시파룸 약물 저항성 하플로타입의 이질적인 분포가 숙주 집단의 하위 집단에서 나타난다.
[Category] 말라리아,
[Article Type] Research
[Source] PMC
All Keywords