Although introduced hemosporidian (malaria) parasites (Apicomplexa: Haemosporida) have hastened the extinction of endemic bird species in the Hawaiian Islands and perhaps elsewhere, little is known about the temporal dynamics of endemic malaria parasite populations. Haemosporidian parasites do not leave informative fossils, and records of population change are lacking beyond a few decades. Here, we take advantage of the isolation of West Indian land-bridge islands by rising postglacial sea levels to estimate rates of change in hemosporidian parasite assemblages over a millennial time frame. Several pairs of West Indian islands have been connected and separated by falling and rising sea levels associated with the advance and retreat of Pleistocene continental glaciers. We use island isolation following postglacial sea-level rise, ca. 2.5 ka, to characterize long-term change in insular assemblages of hemosporidian parasites. We find that assemblages on formerly connected islands are as differentiated as assemblages on islands that have never been connected, and both are more differentiated than local assemblages sampled up to two decades apart. Differentiation of parasite assemblages between formerly connected islands reflects variation in the prevalence of shared hemosporidian lineages, whereas differentiation between islands isolated by millions of years reflects replacement of hemosporidian lineages infecting similar assemblages of avian host species.
【저자키워드】 Plasmodium, Avian malaria, Haemoproteus, bananaquit, beta diversity.,