In this paper, a mathematical model for COVID-19 that involves contact tracing is studied. The contact tracing-induced reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{q}$\end{document} R q and equilibrium for the model are determined and stabilities are examined. The global stabilities results are achieved by constructing Lyapunov functions. The contact tracing-induced reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{q}$\end{document} R q is compared with the basic reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document} R 0 for the model in the absence of any intervention to assess the possible benefits of the contact tracing strategy.
【저자키워드】 COVID-19, Contact tracing, stability, mathematical model, Lyapunov function, 34D20, 34D23, 34D45, 37C75, 【초록키워드】 Intervention, Reproduction number, basic reproduction number, Contact, functions, benefit, examined, absence, mathematical, 【제목키워드】 modeling, COVID-19 transmission, Effect,