Malaria is a major public health problem, afflicting ~36% of the world’s population. The World Health Organization (WHO) has estimated that there were 216 million cases of malaria in 2010, and ~655,000 people died from the disease (~2000 per day), many under age five. Yet the disease, a killer for centuries, remains endemic in many poor nations, particularly in Africa, where it is blamed for retarding economic growth. India contributes ~70% of the 2.5 million reported cases in Southeast Asia. Malaria is also an important threat to travelers to the tropics, causing thousands of cases of illness and occasional deaths. The 5 Plasmodium species known to cause malaria are P. falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi. Most cases of malaria are uncomplicated, but some can quickly turn into severe, often fatal, episodes in vulnerable individuals if not promptly diagnosed and effectively treated. Malaria vaccines have been an area of intensive research, but there is no effective vaccine. Vaccines are among the most cost-effective tools for public health; they have historically contributed to a reduction in the spread and burden of infectious diseases. Many antigens present throughout the parasite life cycle that could be vaccine targets. More than 30 of these are being researched by teams worldwide in the hope of identifying a combination that can elicit protective immunity. Most vaccine research has focused on the P. falciparum strain due to its high mortality and the ease of conducting in vitro and in vivo studies. DNA-based vaccines are a new technology that may hold hope for an effective malaria vaccine.
【저자키워드】 Immunity, Vaccines, parasites, malaria, Research,