Patterns of diversity and turnover in macroorganism communities can often be predicted from differences in habitat, phylogenetic relationships among species and the geographical scale of comparisons. In this study, we asked whether these factors also predict diversity and turnover in parasite communities. We studied communities of avian malaria in two sympatric, ecologically similar, congeneric host species at three different sites. We asked whether parasite prevalence and community structure varied with host population, host phylogeography or geographical distance. We used PCR to screen birds for infections and then used Bayesian methods to determine phylogenetic relationships among malaria strains. Metrics of both community and phylogenetic beta diversity were used to examine patterns of malaria strain turnover between host populations, and partial Mantel tests were used determine the correlation between malaria beta diversity and geographical distance. Finally, we developed microsatellite markers to describe the genetic structure of host populations and assess the relationship between host phylogeography and parasite beta diversity. We found that different genera of malaria parasites infect the two hosts at different rates. Within hosts, parasite communities in one population were phylogenetically clustered, but there was otherwise no correlation between metrics of parasite beta diversity and geographical or genetic distance between host populations. Patterns of parasite turnover among host populations are consistent with malaria transmission occurring in the winter rather than on the breeding grounds. Our results indicate greater turnover in parasite communities between different hosts than between different study sites. Differences in host species, as well as transmission location and vector ecology, seem to be more important in structuring malaria communities than the distance-decay relationships frequently found in macroorganisms. Determining the factors affecting parasite community diversity and turnover has wide-ranging implications for understanding the selective pressures shaping host ecology and ecosystem structure. This study shows that metrics of community and phylogenetic beta diversity can be useful tools for disentangling the ecological and evolutionary processes that underlie geographical variation in parasite communities.
【저자키워드】 Avian malaria, Beta diversity, Phylloscopus humei, Phylloscopus trochiloides, phylogenetic beta diversity,