A nuclear magnetic resonance (NMR) immunoassay based on the application of carbon-coated iron nanoparticles conjugated with recognition molecules was designed. The principle of the assay is that ELISA plates are coated with a capture element, and then an analyte is added and detected by conjugating the magnetic nanoparticles with recognition molecules. Afterwards, the elution solution (0.1-M sodium hydroxide) is added to displace the magnetic nanoparticles from the well surfaces into the solution. The detached magnetic nanoparticles reduce transverse relaxation time (T2) values of protons from the surrounding solution. A portable NMR relaxometer is used to measure the T2. Magnetic nanoparticles conjugated with streptavidin, monoclonal antibodies, and protein G were applied for the detection of biotinylated albumin, prostate-specific antigen, and IgG specific to tetanus toxoid (TT). The limit of detection of anti-TT IgG was 0.08-0.12 mIU/mL. The reproducibility of the assay was within the acceptable range (CV < 7.4%). The key novelty of the immunoassay is that the displacement of the nanoparticles from the solid support by the elution solution allows the advantages of the solid phase assay to be combined with the sensitive detection of the T2 changes in a volume of liquid.
【저자키워드】 assay, Magnetic nanoparticles, elution, Relaxometry,