A quantitative risk assessment was conducted to assess the risk of human salmonellosis acquired from consumption of pecans in the United States. The model considered the potential for Salmonella survival, growth, and recontamination of pecans from the sheller to the consumer, including steps such as immersion in water, drying, conditioning, cracking, partitioning, and storage. Five theoretical microbial reduction treatment levels (1 to 5 log CFU) were modeled. Data from the 2010 to 2013 surveys by the National Pecan Shellers Association were used for initial prevalence and contamination levels. The impacts of atypical situations in the pecan production system were also evaluated. Higher initial contamination levels, recontamination during processing, and a delay in drying postconditioning were the modeled atypical situations. The baseline model predicted a mean risk of salmonellosis in the United States from consumption of in-shell and shelled pecans processed by cold conditioning with no microbial reduction treatment and no further home cooking as 1 case per 775,193 servings (95% confidence interval [CI]: 1 case per 1,915,709 to 178,253 servings). This predicted risk per serving was estimated as a mean of 529 cases of salmonellosis per year (95% CI: 213 to 2,295 cases). Hot conditioning for shelled pecans and microbial reduction treatment of both shelled and in-shell pecans had a significant impact on the predicted mean risk of illness. Assuming 77% of the shelled pecans sold at retail (i.e., 80% of the retail supply) received hot conditioning, the mean estimated salmonellosis cases per year from consumption of in-shell and shelled pecans uncooked at home was 203 (95% CI: 81 to 882 cases) if no additional microbial reduction treatment were applied. The predicted risk of illness per serving was higher for all atypical situations modeled compared with the baseline model, and delay in drying had the greatest impact on risk.
【저자키워드】 Risk assessment, Low moisture, Tree nuts, Dry food, Microbial reduction treatment,