The genus Salmonella has more than 2,600 serovars, and this trait is important when considering interventions for Salmonella control. Bacteriophages that are used for biocontrol must have an exclusively lytic cycle and the ability to lyse several Salmonella serovars under a wide range of environmental conditions. Salmonella phages were isolated and characterized from 34 backyard production systems (BPSs) with a history of Salmonella infections. BPSs were visited once, and cloacal or fecal samples were processed for phage isolation. Four hosts, Salmonella serovars Enteritidis, Heidelberg, Infantis, and Typhimurium, were used for phage isolation. The host range of the phages was later characterized with a panel of 23 Salmonella serovars (serovar diversity set) and 31 isolates obtained from the same farms (native set). Genetic relatedness for 10 phages with a wide host range was characterized by restriction fragment length polymorphism, and phages clustered based on the host range. We purified 63 phages, and 36 phage isolates were obtained on Salmonella Enteritidis, 16 on Salmonella Heidelberg, and 11 on Salmonella Infantis. Phages were classified in three clusters: (i) phages with a wide host range (cluster I), (ii) phages that lysed the most susceptible Salmonella serovars (serogroup D) and other isolates (cluster II), and (iii) phages that lysed only isolates of serogroup D (cluster III). The most susceptible Salmonella serovars were Enteritidis, Javiana, and Dublin. Seven of 34 farms yielded phages with a wide host range, and these phages had low levels of genetic relatedness. Our study showed an adaptation of the phages in the sampled BPSs to serogroup D Salmonella isolates and indicated that isolation of Salmonella phages with wide host range differs by farm. A better understanding of the factors driving the Salmonella phage host range could be useful when designing risk-based sampling strategies to obtain phages with a wide lytic host range for biocontrol purposes.
【저자키워드】 Chicken phage, Phage host range, Pig phage, Salmonella phage,