We propose a system that helps decision makers during a pandemic find, in real time, the mass vaccination strategies that best utilize limited medical resources to achieve fast containments and population protection. Our general-purpose framework integrates into a single computational platform a multi-purpose compartmental disease propagation model, a human behavior network, a resource logistics model, and a stochastic queueing model for vaccination operations. We apply the modeling framework to the current COVID-19 pandemic and derive an optimal trigger for switching from a prioritized vaccination strategy to a non-prioritized strategy so as to minimize the overall attack rate and mortality rate. When vaccine supply is limited, such a mixed vaccination strategy is broadly effective. Our analysis suggests that delays in vaccine supply and inefficiencies in vaccination delivery can substantially impede the containment effort. Employing an optimal mixed strategy can significantly reduce the attack and mortality rates. The more infectious the virus, the earlier it helps to open the vaccine to the public. As vaccine efficacy decreases, the attack and mortality rates rapidly increase by multiples; this highlights the importance of early vaccination to reduce spreading as quickly as possible to lower the chances for further mutations to evolve and to reduce the excessive healthcare burden. To maximize the protective effect of available vaccines, of equal importance are determining the optimal mixed strategy and implementing effective on-the-ground dispensing. The optimal mixed strategy is quite robust against variations in model parameters and can be implemented readily in practice. Studies with our holistic modeling framework strongly support the urgent need for early vaccination in combating the COVID-19 pandemic. Our framework permits rapid custom modeling in practice. Additionally, it is generalizable for different types of infectious disease outbreaks, whereby a user may determine for a given type the effects of different interventions including the optimal switch trigger.
【저자키워드】 vaccine efficacy, mass vaccination, vaccine prioritization, mixed vaccination strategy, switch trigger, biological-behavior-logistics-queueing computational framework, 【초록키워드】 Efficacy, Vaccine, vaccination, pandemic, Mutation, Vaccines, COVID-19 pandemic, Variation, Intervention, Infectious disease, virus, Outbreaks, attack rate, healthcare, mortality rate, mortality rates, resource, disease, platform, protective effect, Analysis, real time, human behavior, Vaccination strategy, switching, Support, help, effort, parameter, Effect, effective, medical resource, highlight, robust, combating, significantly, determine, reduce, the vaccine, 【제목키워드】 Strategy, Dispensing, mass,