Many different countries have been under lockdown or extreme social distancing measures to control the spread of COVID-19. The potentially far-reaching side effects of these measures have not yet been fully understood. In this study we analyse the results of a multi-country survey conducted in Italy (N = 3,504), Spain (N = 3,524) and the United Kingdom (N = 3,523), with two separate analyses. In the first analysis, we examine the elicitation of citizens’ concerns over the downplaying of the economic consequences of the lockdown during the COVID-19 pandemic. We control for Social Desirability Bias through a list experiment included in the survey. In the second analysis, we examine the data from the same survey to predict the level of stress, anxiety and depression associated with being economically vulnerable and having been affected by a negative economic shock. To accomplish this, we have used a prediction algorithm based on machine learning techniques. To quantify the size of this affected population, we compare its magnitude with the number of people affected by COVID-19 using measures of susceptibility, vulnerability and behavioural change collected in the same questionnaire. We find that the concern for the economy and for “the way out” of the lockdown is diffuse and there is evidence of minor underreporting. Additionally, we estimate that around 42.8% of the populations in the three countries are at high risk of stress, anxiety, and depression, based on their level of economic vulnerability and their exposure to a negative economic shock.
【초록키워드】 COVID-19, Anxiety, Depression, Stress, lockdown, susceptibility, COVID-19 pandemic, Italy, Population, Shock, Algorithm, Spain, experiment, behavioural, United Kingdom, questionnaire, predict, Evidence, Analysis, high risk, Side effect, measure, desirability, country, consequence, spread of COVID-19, affected, collected, conducted, magnitude, analyses, Bia, extreme social distancing, 【제목키워드】 COVID-19, Italy, Shock, Spain, United Kingdom, Assessing, mental health problem,