Covid-19 epidemic dramatically relaunched the importance of mathematical modelling in supporting governments decisions to slow down the disease propagation. On the other hand, it remains a challenging task for mathematical modelling. The interplay between different models could be a key element in the modelling strategies. Here we propose a continuous space-time non-linear probabilistic model from which we can derive many of the existing models both deterministic and stochastic as for example SI, SIR, SIR stochastic, continuous-time stochastic models, discrete stochastic models, Fisher–Kolmogorov model. A partial analogy with the statistical interpretation of quantum mechanics provides an interpretation of the model. Epidemic forecasting is one of its possible applications; in principle, the model can be used in order to locate those regions of space where the infection probability is going to increase. The connection between non-linear probabilistic and non-linear deterministic models is analyzed. In particular, it is shown that the Fisher–Kolmogorov equation is connected to linear probabilistic models. On the other hand, a generalized version of the Fisher–Kolmogorov equation is derived from the non-linear probabilistic model and is shown to be characterized by a non-homogeneous time-dependent diffusion coefficient (anomalous diffusion) which encodes information about the non-linearity of the probabilistic model.
【저자키워드】 Diseases, Applied mathematics, Systems biology, 【초록키워드】 Infection, Probability, Epidemic, Region, Interpretation, Mathematical modelling, information, Government, connection, diffusion, ENCODE, deterministic model, statistical, shown, analyzed, example, the disease, linear, characterized, can be used, provide, 【제목키워드】 Epidemic,