Background Australia implemented an mRNA-based booster vaccination strategy against the COVID-19 Omicron variant in November 2021. We aimed to evaluate the effectiveness and cost-effectiveness of the booster strategy over 180 days. Methods We developed a decision-analytic Markov model of COVID-19 to evaluate the cost-effectiveness of a booster strategy (administered 3 months after 2nd dose) in those aged ≥ 16 years, from a healthcare system perspective. The willingness-to-pay threshold was chosen as A$ 50,000. Results Compared with 2-doses of COVID-19 vaccines without a booster, Australia’s booster strategy would incur an additional cost of A$0.88 billion but save A$1.28 billion in direct medical cost and gain 670 quality-adjusted life years (QALYs) in 180 days of its implementation. This suggested the booster strategy is cost-saving, corresponding to a benefit-cost ratio of 1.45 and a net monetary benefit of A$0.43 billion. The strategy would prevent 1.32 million new infections, 65,170 hospitalisations, 6,927 ICU admissions and 1,348 deaths from COVID-19 in 180 days. Further, a universal booster strategy of having all individuals vaccinated with the booster shot immediately once their eligibility is met would have resulted in a gain of 1,599 QALYs, a net monetary benefit of A$1.46 billion and a benefit-cost ratio of 1.95 in 180 days. Conclusion The COVID-19 booster strategy implemented in Australia is likely to be effective and cost-effective for the Omicron epidemic. Universal booster vaccination would have further improved its effectiveness and cost-effectiveness.
【저자키워드】 COVID-19, Australia, booster, Markov model, cost-effective analysis,