There have been over 769 million cases of COVID-19, and up to 50% of infected individuals are asymptomatic. The purpose of this study aimed to assess the use of a clinical-grade physiological wearable monitoring system, ANNE One, to develop an artificial intelligence algorithm for (1) cough detection and (2) early detection of COVID-19, through the retrospective analysis of prospectively collected physiological data from longitudinal wear of ANNE sensors in a multicenter single arm study of subjects at high risk for COVID-19 due to occupational or home exposures. The study employed a two-fold approach: cough detection algorithm development and COVID-19 detection algorithm development. For cough detection, healthy individuals wore an ANNE One chest sensor during scripted activity. The final performance of the algorithm achieved an F-1 score of 83.3% in twenty-seven healthy subjects during biomarker validation. In the COVID-19 detection algorithm, individuals at high-risk for developing COVID-19 because of recent exposures received ANNE One sensors and completed daily symptom surveys. An algorithm analyzing vital parameters (heart rate, respiratory rate, cough count, etc.) for early COVID-19 detection was developed. The COVID-19 detection algorithm exhibited a sensitivity of 0.47 and specificity of 0.72 for detecting COVID-19 in 325 individuals with recent exposures. Participants demonstrated high adherence (≥ 4 days of wear per week). ANNE One shows promise for detection of COVID-19. Inclusion of respiratory biomarkers (e.g., cough count) enhanced the algorithm’s predictive ability. These findings highlight the potential value of wearable devices in early disease detection and monitoring.
【저자키워드】 viral infection, Diagnostic markers, Epidemiology, Respiratory signs and symptoms,