ABSTRACT Among the numerous variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that have been reported worldwide, the emergence of the Omicron variant has drastically changed the landscape of the coronavirus disease (COVID-19) pandemic. Here, we analyzed the genetic diversity of Moroccan SARS-CoV-2 genomes with a focus on Omicron variant after one year of its detection in Morocco in order to understand its genomic dynamics, features and its potential introduction sources. From 937 Omicron genomes, we identified a total of 999 non-unique mutations distributed across 92 Omicron lineages, of which 13 were specific to the country. Our findings suggest multiple introductory sources of the Omicron variant to Morocco. In addition, we found that four Omicron clades are more infectious in comparison to other Omicron clades. Remarkably, a clade of Omicron is particularly more transmissible and has become the dominant variant worldwide. Moreover, our assessment of Receptor-Binding Domain (RBD) mutations showed that the Spike K444T and N460K mutations enabled a clade higher ability of immune vaccine escape. In conclusion, our analysis highlights the unique genetic diversity of the Omicron variant in Moroccan SARS-CoV-2 genomes, with multiple introductory sources and the emergence of highly transmissible clades. The distinctiveness of the Moroccan strains compared to global ones underscores the importance of ongoing surveillance and understanding of local genomic dynamics for effective response strategies in the evolving COVID-19 pandemic.
【저자키워드】 variants of concern, omicron, Spike protein, Phylogenetic analysis, Next-generation sequencing, SARS-CoV-2 genomic surveillance,